Analysis of a Nondegenerate Two-Photon Giant-Pulse Laser

Introduction

In a recent article\(^1\) to which we shall refer as [S&B], a two-photon laser was proposed and analyzed. This device consists of a cavity resonant at frequency \(v_A\) and containing ions of type \(B\) with an inverted population \(N_B/\nu\) between levels separated by an energy difference \(\hbar\nu_b\) such that \(v_b = 2v_A\); it is necessary that the system not lase at \(v_B\), which criterion can be satisfied by low reflectivity of the cavity at frequency \(v_B\), by strong parasitic absorption in the laser material near frequency \(v_B\), or preferably by a choice of ion such that the transition \(v_B\) is highly forbidden to a single-quantum process. The authors of [S&B] thus show that a certain priming density of photons of frequency \(v_A\) will provoke the simultaneous emission from the inverted population \(N_B\) of pairs of photons \(v_A\) at a rate exceeding the cavity loss, the process diverging until the population inversion is eliminated.

It is the purpose of this communication to show by a very similar analysis that the same system of ions \(N_B\) in a cavity resonant at two frequencies \(v_A\) and \(v_c\), such that \(v_d + v_c = v_B\), may be primed at \(v_A\) with a number of photons small compared with \(N_B\) and will yield two giant pulses simultaneously at frequencies \(v_A\) and \(v_c\). We consider the energy level diagram of Fig. 1. The relaxation of the requirement of [S&B] that \(v_B = 2v_A\) leads to the following: (1) it allows the use of metastable levels \(v_B\) such that \(v_B \gg v_A\) and thus makes available high-intensity laser output in a new short-wavelength range;\(^2\) (2) it allows the production of new laser lines in addition to the amplification of known ones; (3) it eases substantially the problem of designing a system to exhibit the unique fast rise-time characteristics of the multiple-photon laser, which are discussed later in this communication; and (4) it allows the ready production of difference frequencies from the interaction, in a suitable nonlinear medium, of the automatically simultaneous giant pulses.

Equations for the photon population

To the accuracy required for our purposes now, the analysis of [S&B, Eqs. (1) to (13)] makes plausible the following rate equations:

\[
\frac{dS_C}{dt} = B_C S_C S_A N_B - \frac{S_C}{\tau} \tag{1}
\]

\[
\frac{dS_A}{dt} = B_C S_C S_A N_B - \frac{S_A}{\tau} \tag{2}
\]

\[
\frac{dN_B}{dt} = -B_C S_C S_A N_B \tag{3}
\]

in which \(S_A\) and \(S_C\) are the cavity populations of photons of frequency \(v_A\) and \(v_C\) respectively. The cavity decay-time \(\tau\) is assumed common for the two sets of photons, and the two-photon coupling constant \(B_1\) is given in [S&B].

Figure 1 Energy level scheme for the two-photon laser. The inverted population \(N_B\) is prevented from lasing by means of low cavity \(Q\) or by choice of a very long spontaneous lifetime. The cavity has a high \(Q\) at both \(v_B\) and \(v_A\); and the laser will be “primed” with an initial population \(S,(0)\) photons at frequency \(v_A\). (For simplicity we consider only a single mode at \(v_c\) and \(v_A\)).

\(^1\)S&B

\(^2\)Reference
The behavior of the multi-photon laser is simply treated in three time regimes: I, exponential growth of the minority photon population; II, giant pulse, during which S_A and S_C grow together and N_B approaches 0; and III, decay. We shall first discuss Regimes II and III, and then shall treat the priming requirements of Regime I.

Regime II: Development of the giant pulse

In this regime $S_A \approx S_C \equiv S$, and the terms in $1/\tau$ are negligible. Thus Eqs. (1) and (2) become

$$\frac{dS}{dt} \approx B_1 S^3 N_B \approx -\frac{dN_B}{dt}$$

which indicates a maximum logarithmic growth rate

$$\frac{1}{S} \frac{dS}{dt} \bigg|_{\text{max}} \approx B_1 S N_B(0) \approx B_1 N_B(0)^2,$$

which may far exceed the logarithmic growth rate of a conventional giant pulse laser. Eq. (4) would yield the solution

$$\left(1/S_s\right) - \left(1/S\right) = B_1 N_B t,$$

showing that the giant pulse total growth time is on the order of $1/[S_0 B_1 N_B(0)]$. Equations (3) and (4) are readily solved together in the form

$$\frac{d\sigma}{dT} = \sigma^2 (1 - \sigma)$$

[which $\sigma = S/N_B(0)$ and $T = B_1 N_B^2(0)t$, and in which we have noted that $N_B(t) \approx N_B(0) - S(t)$ according to Eq. (4)] with the indefinite integral

$$\frac{-1}{\sigma} - \ln \left(\frac{1}{\sigma} - 1\right) = T$$

giving rise to the plot of Fig. 2.

From the parameters given in [S&B], $N_B(0) = 2 \times 10^{15}$ and $B_1 = 3.6 \times 10^{-25}$ sec$^{-1}$, we find the time unit $[B_1 N_B^2(0)]^{-1}$ to be 0.7×10^{-12} sec, and from Fig. 2 we see that

$$\frac{1}{S} \frac{dS}{dt} \bigg|_{\text{max}} \approx \frac{B_1 N_B^2(0)}{4} \approx 3 \times 10^{13}$$. sec$^{-1}$.

Such enormous rates of change of population justify the neglect of the $1/\tau$ terms in this growth regime. Incidentally, they also cast some doubt on the quantitative validity of this model of a homogeneous cavity population in the presence of a growth rate corresponding to ~ 1 mm travel of light!

Regime III: Decay

As has been shown, the growth of the photon population and the deexcitation of all of the ion inverted population occurs in a time much less than the cavity decay-time τ. Thus Regime III is simply an exponential decay, $S_A \approx S_B \approx N_B e^{-t/\tau}$.

Regime I: Priming conditions

- **Method I**

 The priming criteria require some special discussion. We assume that the laser is primed with a substantial population $S_A(0)$ of photons ν_A. The condition for growth of the ν_A population, according to Eq. (1), is

 $$B_1 S_A(0) N_B \geq \frac{1}{\tau}$$

 (7)

 or

 $$S_A > S_0 = \frac{1}{B_1 N_B \tau},$$

 (8)

 which is identical with [S&B, Eq. (17)] except for a trivial factor of 2. Thus if Eq. (7) is well satisfied, S_C will grow exponentially with a time constant $1/B_1 S_A N_B(0)$ until S_C is no longer small compared to S_A. More precisely, one scheme for priming is to fill the cavity to a level $S_A(0)$ satisfying Eq. (8), and to allow the ν_A population to decay freely while the ν_C population grows. The condition that $S_C \approx S_A$ before S_A decays below the critical level, Eq. (8), is thus readily seen to be

 $$S_A(0) \geq \ln \left(\frac{S_0}{1}\right)$$

 (9)

 (considering the initial “spontaneous” emission from the $[N_B \rightarrow S_A(0)]$ system into the ν_C mode as being induced by the zero-point energy of the vacuum). Thus Method I requires an initial priming photon density about 30 times as great as is necessary for the degenerate two-photon laser of [S&B].

- **Method II**

 An alternative to Method I is to supply priming photons
Figure 3 Course of events in the nondegenerate two-photon laser. This hypothetical system of \(N_A(0) = 2 \times 10^6 \) inverted \(B \) ions was primed with a total of \(\sim 10^8 \) \(A \) photons, a priming energy of \(10^{-8} \) joule.

\(r_A \) over a period of several cavity decay-times. We can thus calculate the total number of photons \(r_A \) and the corresponding supply time required for reaching Regime II. The result is that the number is a minimum for instantaneous supply as in Method I and is

\[
S_{\text{min}} \approx S_0 \ln S_0, \tag{10}
\]

but that the total number of priming photons required does not increase by much so long as one pumps well over the threshold, Eq. (8). Thus, \(2S_0 \ln S_0 \) expresses the number of \(r_A \) photons required if one maintains a photon level \(2S_0 \) in the cavity for a time \(\tau \ln S_0 \approx 10^{-7} \) sec, using the parameters of [S&B]. Normal laser spikes exceed \(10^{-7} \) seconds in duration, so that the nondegenerate two-photon laser can be primed by the same photon source that would be adequate for the degenerate case.

Figure 3 shows the course of the various populations as a function of time, using Method I for priming, whereas Figure 2 shows the steep region of the pulse on a time scale expanded \(\sim 10^4 \) times.

Discussion

We have analyzed briefly the predicted performance of a nondegenerate two-photon laser. The triggering requirements would be eased by a higher cavity \(Q \) for the priming photons \(r_A \). They seem stiff but not impossible.

The very high logarithmic-growth-rate of the two-quantum laser deserves some comment. Normal \(Q \)-switched lasers are limited in growth rate by the condition that the cavity in the low-\(Q \) status be stable against the exponential growth of population in the resonant modes. Thus, if the cavity time constant is switchable between \(\tau/\tau \) and \(\tau \), the above condition requires the build-up time in the absence of loss to be longer than \(\tau/\tau \). For pink ruby, the \(Q \)-switched rise time has been shown to be about \(2 \times 10^{-9} \) sec, about three orders of magnitude larger than the rise time calculated above for the two-photon laser. It remains for experiment to demonstrate the magnitude of improvement actually attainable by the two-photon technique.

Acknowledgments

The author is indebted to Dr. P. P. Sorokin and Dr. N. Braslau for their reading of the manuscript and their comments thereon.

References and footnotes

2. The priming requirement increases by less than a factor of two for \(r_C/3 \leq A \leq 3 \), so that the approximate analysis will be made here for \(r_C = r_A \).
3. Strictly speaking, unless \(S_C \gg 1 \), Eq. (1) should be written \(dS_C/dt = B_S S_A N_B (S_C + 1) - S_C / \tau \), i.e., \(dS_C/dt = B_S S_A N_B - S_C / \tau + B_S S_A N_B \). The last term represents spontaneous emission and is included in the above analysis by starting with \(S_C = 1 \). Equation (9) is obtained as follows: In the priming phase of Method I we have

\[
S_A(t) = S_A(0)e^{(-t/\tau)}, \tag{9a}
\]

and

\[
dS_C = \frac{S_A(t) S_C}{S_0} - \frac{S_C}{\tau} = \frac{S_C}{\tau} \left[\frac{S_A(0)}{S_0} e^{-t/\tau} - 1 \right], \tag{9b}
\]

which integrates directly to

\[
\ln \left[\frac{S_C(t)}{S_C(0)} \right] = \frac{S_A(0)}{S_0} \left(1 - e^{-t/\tau} \right) - \frac{t}{\tau}, \tag{9c}
\]

which for \(S_C(0) = 1 \) and \(S_A(0)/S_0 \gg 1 \), gives Eq. (9).

Received May 12, 1964